
   
 

 

FIRST LOGIC TASK 

 

 

Description 

In this exercise, we will create a "Guitar Hero" style video game, where the elements will appear 

from the top of the screen and our player will have a designated position for each key. 

To do that we go to MakeCode Arcade and we realise the following operation. 

 

Goals 
 

- Work with game logic in MakeCode Arcade. 

- Work with and understanding variables in MakeCode Arcade. 

- Assign a player position to each key. 

- Explore melodies and sounds in the program and their applications. 

- Increase the difficulty by changing the speed. 

 

  

https://arcade.makecode.com/


   
 

Game programming  

  

ASSETS CREATION 

MAIN SPRITE CREATION 

We recommend using a 16x16 px grid 

for Steve's sprite. 

 

TILEMAP CREATION 

We recommend using a 10x8 px matrix.  

 
 

 

 



   
 

ADITIONAL SPRITE CREATION 

We recommend using a 16x16 grid for 

the left Sprite 

 

We recommend you using a 16x16 grid 

for the up sprite 

 

We recommend you using a 16x16 grid 

for the down Sprite 

 

We recommend you using a 16x16 grid 
for the right sprite. 

 
  



   
 

MAIN PROGRAMMING 

ON START GAME CREATION 

The first step is to create an "on start" 

block and create our tile map. 

Additionally, we can add an effect to 

start the game. 

The next step is to create the sprite for 

our player. We choose an image from 

the gallery and apply it. Then, we set a 

default position for the character. 

We add the speed of the notes and set 

it to 40. We also add a score counter 

and set it to 0, and we give the player 5 

lives. 

Lastly, we set the tempo for the music 

playback. 

 
  



   
 
 

NOTES SPAWN MECHANIC 

What we will do now is create the game 
mechanics where the game randomly 

chooses one of the 4 options every half 
a second, set an initial position for each 
arrow, and increase the spawn speed. 

Using the "on game update every" block, 
we will make the actions inside it 

happen every half a second. With a 
variable called "lane," we will set a lane 
for each arrow to descend, and we will 
make it choose one of the four lanes 

randomly. 
Now, using an "if" statement, we will 
give instructions for lane number 1. In 

this lane, a left-facing arrow sprite will 

appear as a projectile type. We set its x 
velocity to 0 and add the "speed" 

variable to its y velocity. Finally, we set 

the initial position for the left arrow, 

which will be x = 30 and y = 8. 
In line 2, we will use the up-facing 

arrow sprite and give it the same 

velocity parameters, but we change 

the position to x = 60 and y = 8. 
For the characteristics of line 3, we will 
use a down-facing arrow. We set the 
same velocity parameters but change 

the position to x = 100 and y = 8. 
For the last lane, we will use a right-

facing arrow with the same velocity 
parameters as the previous arrows, but 

we change the position to x = 130 and 
y = 8. 

Lastly, if we want to add difficulty, we 

can add the block "set speed by 1". 
This way, the speed of arrow spawn will 

increase by one.  

 



   
 

PLAYER MOVEMENT MECHANIC 

Now it's time to give movement to the 
player so that they can catch the falling 

arrows. To do this, we will set the 
player's x position to be the same as the 

left arrow's x position when the left 
button is pressed, and we set the note 

to 1.   

 

When the right button is pressed, we 
will set the player's x position to be the 

same as the right arrow's x position, 
and we will set the note to 2. 

 

When the up button is pressed, we will 
set the player's x position to be the 

same as the up arrow's x position, and 
we will set the note to 3. 

 

When the down button is pressed, we 
will set the player's x position to be the 
same as the down arrow's x position, 

and we will set the note to 4 

 
  



   
 
 

LOSING LIFE MECHANIC 

Now, in order to prevent the 

uncollected arrows from accumulating 

at the bottom, we will add the "on 

sprite of kind 'projectile' hits wall" 

block. With this, we will make the 

arrows destroy themselves. We can 

decorate it with a fire effect and add a 

sound. Additionally, the player will lose 

a life each time he fails to collect an 

arrow.  

 

 

NOTES AND SCORE MECHANIC CREATION 

Now, we will create an "on sprite of 

kind 'player' overlaps 'projectile'" block 

to destroy the arrow when the player 

collects it, along with a special effect. 

We will also increase the score by 1 and 

randomly assign two different notes 

with a volume of 105 for the player to 

collect.  

To set the parameters for Note 1 (left 

arrow), we will use an "if" statement to 

check if the note equals 1. Inside this 

"if" statement, we will use an "if-else" 

statement to handle two different 

sounds using the variable "note2". This 

way, it will randomly choose one of the 

two sounds.  

 



   
 

Now it's time to work on Note 2 (right 

arrow). We will follow a similar process 

as before by nesting the conditions. 

Inside an "if" statement, we will add 

another "if-else" statement with the 

condition for Note 2 and two different 

sounds. This way, when we catch this 

arrow, it will play one of the two sounds 

randomly. 

 

The same process applies to Note 3 (up 

arrow). We add another nested 

condition within the existing ones, 

setting the condition note = 3. Then, we 

introduce two different tones for the up 

arrow, so it will randomly choose one of 

them when caught. 

 



   
 

Finally, for Note 4 (down arrow), we 

follow the same process. Within the 

nested condition, we set the condition 

note = 4. Then, as before, we add two 

tones for the down arrow, so it will play 

one of them randomly when caught. 

 

GAME OVER MECHANIC CREATION 

The last step is to add an "on life zero" 

block and add effects inside it so that 

when our life reaches zero, a game over 

message appears and the sounds stop. 

 
 

With this programming, our player will appear on the screen and will have to move sideways to 

collect the falling arrows and create a melody while scoring points. When the player misses a note, 

they will lose one life, and if their life reaches zero, the game will end. 

Now, it is your turn to personalize and add content to it. Here is our version for inspiration:  

https://makecode.com/_069M2R7W0dX8 

  

https://makecode.com/_069M2R7W0dX8


   
 

Glossary 

Conditionals: Sequence of instructions that are executed based on the value of a condition. 

Example: If, If...Else 

If: Conditional statement that, based on the result of a logical operation, executes a sequence of 

instructions or skips them. 

If-Else: Conditional statement that, if a condition is met, executes one sequence of instructions; 

otherwise, it executes a different sequence. 

If...Else if: Sequence of conditionals in which we pass, in an orderly manner, from one condition to 

another until one of them is met. 

Comparison Operators: Operators that compare one value to another and are used within a 

condition. 

Variables: A space associated with an identifier that holds a value, which can be modified. 

Functions: A subprogram that contains a set of instructions and can be executed from the main 

program by calling it. 

Sequences: A programmed action that the computer performs in order. 

Event: Executes a sequence of instructions when an external event occurs. 

Player: A participant in a game. 

Acceleration: The change in velocity per unit of time. 

Velocity: A physical quantity that relates position to the change in time. 

Scene: The space where the video game takes place. 

Randomness: The generation of numbers with equal probability. 

Score: The total points a player obtains by performing certain interactions. 

Life: A resource that the player has to continue playing. Once all lives are lost, the game is over. 

Game Over: The game has ended. It usually displays scores and asks if you want to play again. 

Music: A combination of sounds and silences that compose a rhythm. 

Game Genre: A classification of video games based on their gameplay. 

Effect: Something applied to the scene, object, character, or other elements to convey realism or a 

sensation within the game. 

Colour Palette: A panel with a variety of colours that allows selecting a colour to apply to elements 

in the video game. 

 


