

FIRST TILEMAPS TASK

Description

In this project, we will be creating the classic game of Pac-Man or Come Cocos. The main objective of

the game is to eat as many coconuts as possible while avoiding getting caught by the ghosts.

The concepts related to the essential aspects of a video game are:

Sprite design, the use of functions, or the use of colored tilemaps and replacing these colors with

different sprites. We will also work on sprite animations, interactions with various elements of the

game, and additional instructions that add quality to the video game.

To do this, we will access MakeCode Arcade and perform the necessary operations.

Goals

- Draw a map with colours and replace each colour with different elements for the game.

- Create a Sprite for our main character: "Pac Man" that we can control its movement.

- Create an animation for our character.

- Create Sprites for our opponents.

- Place opponents that patrol.

- Place an opponent that follows "Pac Man."

-

https://arcade.makecode.com/

Programming guide.

Here you have part of the Assets and programming
 https://makecode.com/_D1hapJLR02hx

ASSETS CREATION

MAIN SPRITE CREATION

We recommend using a 13x13 pixel

matrix for the " Pac Man " Sprite.

ENEMIES SPRITE CREATION

We recommend using a 13x13 px for
the ‘’GhostRed’’ Sprite

https://makecode.com/_D1hapJLR02hx

To create the rest of them, simply

duplicate the previous sprite and change

the base color to green, orange, and

pink, respectively.

TILEMAP CREATION

Then we will go to the " set tile map to"
block and create the scenario with

different colours, which will be later
replaced with different elements. The
dimensions of the tile map are 21x21

px.

Now we will create the Sprite for the
block, which will be 16x16 px and will

replace the tile map.

We create the Sprite for the door of our
ghost zone

We create the Sprite for the sphere that
Pac-Man will collect.

ANIMATION SPRITE CREATION

With our Pac Man Sprite, we will create
the different Sprites that will compose

the animations.

MAIN PROGRAMMING

ON START GAME CREATION

To begin, we will create an " on start"

block and place the following inside it:

"set score to" and set it to 0, " set tile

map to" (which we will create later), the

" Pac Man" Sprite, and finally, camera

follow sprite.

START STAGE CREATION

We create a “startStage” function.

First, we will set the background colour

and then we will replace different

colours with elements of the scene. We

will create a 16x16 px block-shaped

Sprite. We will also activate walls in the

colours blue, green, purple, orange, and

pink, so that the " Pac Man" Sprite

cannot pass through them. The light

blue and red colours will be left without

a Sprite because we will replace them

latLoer in a different way.

For the yellow colour, we will use the

block " Place ‘Pac Man’ on top of

random". This will make "Pac Man"

start at that point.

Next, in the " Loops" category, we will

use the block "for element value of list

". Inside the "list" block, we will use the

" array of all tiles" block, so that the

programming inside the loop runs for

each white area.

When the programming detects these

white areas, it will create a 5x5 px sprite

called " Ball" and place it in these areas.

GHOST SPAWN FUNCTIONS

We create the “startGhost” function.

We will place the " ghostRed" Sprite

and right below it, use the block " place

‘ghostRed’ on top of random " to

replace the red color. We will set a

vertical speed of -61 to make it move

upwards. In the " loops " category, we

will add a pause of 2000ms to give the

ghost enough time to exit its area.

Finally, we will use the block " set tile

‘color 'light blue color' to a ‘sprite’ with

wall ‘on’” to replace the light blue color

with a sprite.

Next, we will place the rest of the

opponents.

For " ghostGreen ", we will use the

block " place ‘ghostGreen’ on top of

‘tilemap col 19 row 1'" and set a

horizontal speed of -35.

For " ghostOrange ", we will use the

block " place ‘ghostOrange’ on top of

‘tilemap col 5 row 12’" and set a vertical

speed of -35.

For "ghostPink", we will use the block

"place 'ghostPink' on top of 'tilemap col

19 row 19'" and set a horizontal speed

of -35.

START ANIMATION CREATION

Now we will create the final function "

startAnimation", and with it, we will

control the different animations that

our Pac Man will have based on its

movement.

To start, we will set a series of variables

to store the state of Pac Man, that is, to

know if it is moving left, right, up, or

down.

" animLeft ", "animRight”, “animUp”

and “animDown " respectively.

Let's start programming the upward

animation.
To do that, we'll begin with the

Animation “set ‘animUp’ to create
animation of ‘Up’ with Interval 200ms".

This assigns a name 'Up' to the
animation and assigns it to the variable

‘animUp’.
Next, we'll place the following block: "
ttach animation ‘animUp’ to sprite ‘Pac
Man’". This links the animation to our

Pac Man character.
Finally, we'll add the frames we have
for the animation and assign them to

our animation.

After that, we replicate the entire block

and make changes according to the

different animations.

Once we have our 3 functions ready, we

add them to our " on start" block using

the " call startAnimation " block, the "

all startStage " block, and the "call

startGhost" block.

PAC MAN MOVEMENT MECHANICS CREATION

Now we will start with the controls for

our 'Pac Man'.

In the " Controller " section, we select

the " on ‘left’ button ‘pressed " block.

To make Pac Man move to the left and

only to the left, we set ‘Pac Man’ ‘vx

(velocity x)’ to -40 and ' set ‘Pac Man’

‘vy (velocity y)’ to 0. This ensures that

when we change direction, Pac Man will

move only in that direction.

Ahora comenzaremos con los controles

de nuestro ‘Pac Man’.

Now we repeat this block with different
buttons and directions.

ENEMIES MOVEMENT MECHANICS

We're going to make our ‘ghostRed’

follow ' Pac Man '.

In the " Loops " section, we use the "

forever " block and add " set ‘ghostRed’

follow' Pac Man’ with speed 35". This

will make the ‘ghostRed’ sprite follow

'Pac Man' at a speed of 35.

We're going to create the patrol

behavior for the rest of the ghosts.

We'll create a collision block for each

color.

Let's start with "on ‘sprite’ of kind

‘enemy’ hits wall ‘pink colour '" and

then add "set ‘sprite’ velocity to vx 0 y

vy 35".

Next, we continue with the following

colors with the appropriate changes.

" on ‘sprite’ of kind ‘enemy’ hits wall

‘purple colour '" and then add " set

‘sprite’ velocity to vx -35 y vy 0".

" on ‘sprite’ of kind ‘enemy’ hits wall

‘orange colour” and then we add“set

‘sprite’ velocity to vx 0 y vy -35'"

" on ‘sprite’ of kind ‘enemy’ hits wall

‘green colour '" and then add " set

‘sprite’ velocity to vx 0 y vy -35".

EATING MECHANIC INTERACTIONS

Now, we will make our Pac Man able to

eat the orbs to score points.

" on ‘sprite’ of kind ‘Player’ overlaps

‘otherSprite’ of kind ‘Food’ ". This

indicates that when the player overlaps

with the food, do the following.

" destroy ‘otherSprite’'". This destroys

the food orb.

" change score by 1". This adds one

point to our score counter.

WIN AND LOSE CREATION MECHANICS

When 'Pac Man' collects all the points,
we need to end the game and declare

victory.
To do this, we will follow these steps:

In the Game section, we will use the "on
game update " block and inside it, we

will add a Logic block with the condition
“if ‘score = 205’ then”. Inside this

condition, we will add the block "game
over ‘win'" from the Game section.

Finally, we will make our Player lose the

game and have to start over when it

collides with any Enemy.

" on ‘sprite’ of kind ‘Player’ overlaps

‘otherSprite’ of kind ‘Enemy’". And then

add a " game over ‘lose'" block to

indicate that the game is lost.

LAST DETAILS

To provide context to the game and

create a more immersive experience,

we can add explanatory texts and a

short introductory music.

INTRO FUNCTION CREATION

First, we will create a function called

“introGame " where we will place our

texts and the introductory melody.

To start introducing the texts, we will go

to " Game " and use the " show long

text " block. Enter the desired text

within the block and select the option

to display it full screen. Repeat this step

for each text you want to include.

MELODY CREATION

To add melodies, go to " Music" and use
the " Play Melody ’notes’ at tempo 300
(bpm) " block. Enter the desired musical

notes within the block. If you want to
make the melody longer, simply add
more melody blocks. With tempo we
can change the speed of the melody.

LAST STEPS

Finally, we add the " call ‘introGame '"
block to the " on start " block at the
beginning of the code to start our

introduction.

The final detail is to add a sound every
time Pac Man eats a sphere.

To do this, go to " Music " and use the
"play sound ‘ba ding '" block. Place this
block within the code block that detects
the collision between Pac Man and the

sphere.

Thanks to this programming, we have created a Pac-Man game in which we have learned to create

tilemaps, animations, functions, and movements. Now it's time to enjoy our effort and, of course,

give it our personal touch.

Glossary

Event: Executes a sequence of instructions when an external event occurs in the system.

Functions: A subroutine that contains a set of instructions and can be called from the main program.

Comparison Operators: Operators that compare one value to another and are used within

conditions.

Conditionals: Sequence of instructions that are executed based on the value of a condition.

Acceleration: The rate of change of velocity per unit of time.

Velocity: A physical quantity that relates position to the rate of change of time.

Scene: The space where the game takes place.

Walls: Objects or areas where the different elements of the game cannot pass through.

Camera: An object within a scene that serves as the player's view of the game.

Game Over: The game has ended. It usually displays scores and asks if you want to play again.

Animation: The illusion of motion created by displaying a series of frames of a sprite.

Music: Combination of sounds and silences that compose a rhythm.

Narrative: Part of a video game that helps build a story.

Colour Palette: Panel that provides a variety of colours for selecting and applying them to game

elements.

Score: Total points obtained by a player through certain interactions.

