

SECOND MOTION TASK

Description

In this Project we will practise different programming concepts such as the sprites creation or giving

them movement. Also, we will see how they interact with each other or establishing variables.

Goals

- Work on the sprites movement.
- Program interactions between the elements.
- Establish a score that changes depending on the situation.
- Give a speed and acceleration to the sprites.
- Create different obstacles and program their entry in scene.

Programming guide

NEW PROJECT

We start creating a project, we

should stablish the name, for

example ¨jumping dinosaur¨ and

then press ¨create¨ button.

ASSETS CREATION

Sprite Player Creation

We create one sprite with 16 x 16 px dimensions.

We create in ¨Assets¨ and then we look for a

sprite that we like in ¨Gallery¨. After that we click

on ¨Done¨

Here we have part of the assets and programming

https://makecode.com/_avH01Y8kLbrP

https://makecode.com/_avH01Y8kLbrP

ASSET CREATION

MAIN SPRITE CREATION

We recommend using a 24x24 grid

for the tRex Sprite.

ADITIONAL SPRITE CREATION

We recommend using a 16X16 grid

for the cactus Sprite.

We recommend using a 24x16 grid

for the fly Sprite.

TILEMAP CREATION

We create the start2 tilemap in a

10x8 grid.

We create a ground for the dinosaur

to walk on and prevent it from

falling, we will use the "draw wall"

tool.

MAIN PROGRAMMING

ON START GAME CREATION

Inside the “on start” block, we are
going to create our scene using the
“set background colour to” code. After
that, we will create our caracter, the
“TRex”, giving it an y-acceleration and
a position.
To finish with the “on start”, using the
“set tilemap to” we are going to create
the floor where our “TRex” is going to
move.

JUMPING MECHANIC

With this programming we will

establish that if the “TRex” is touching

the floor and we press the A button, it

can jump.

OBSTACLES SPAWN

By creating the obstacles and putting
them inside the “game update”, we
are making them appear every 1.5
seconds. They will appear from the
right side because we have used the
“place – on top of” code with this
values. It is important to give speed to
de x-axis and not the y-axis to make it
work.

With the last block of this ”update”,
we are going to make the obstacles
destroy theirselves when they get out
of the scene.
We will use the code below the
“update”to increase our score by 1
when an obstacle is destroyed.

We are going to create the variable

“spawn” and we are going to drag

under the autodestroy the “changes

by 1” block.

We will use a “if” to establish that if

“spawn” is higher than 4, a new

variable, “spawn2”, will be set. This

variable will choose a random number

between 1 and 2.

Under the “set spawn2”, we will use

another “if” to set that if this variable

is equal to 2, other type of projectile

will appear form the right side of the

scene.

INTERACTION MECHANIC

Finally, we are going to program that if
a projectile overlap with our character,
we will lose the game.

With this programming, we will use the sprite of kind “Player” o “TRex” to avoid the obstacles and

getting points for each one avoid, trying to get as much points as possible. If we crash into with an

obstacle, we will lose the game and the game will be over.

Glossary

Physics: In video games, physics refers to the behaviour of various elements within an

environment. It often simulates real-world physics.

Game Over: The game session has ended. It usually displays scores and asks if you want to

play another game.

If: Conditional statement that, based on the result of a logical operation, executes a

sequence of instructions or skips it.

Variables: It is a space associated with an identifier, and that space holds a value that can be

modified.

Comparison Operators: Operators that compare one value to another and are used within a

condition.

Acceleration: The rate at which an object's velocity changes over time.

Randomness: The generation of numbers or events that have an equal probability of

occurring.

Rewards: Incentives offered to players for achieving objectives.

