

THIRD ARRAYS TASK

Description.

In this project, we will create a variation of the classic game "Memory," where the player has a table

with cards and has to select two cards with the same image in consecutive turns.

We will use many of the concepts we have learned so far, with a primary focus on the "Array"

section, where we will store the positions of each card, the related images, and more.

In order to do that, we use MakeCode Arcade to create the game.

Goals.

● Create a sprite that serves as a cursor for navigating between different options.

● Use arrays to achieve the desired result, both for generating random content and associating

images with specific positions.

https://arcade.makecode.com/

Programming guide.

ASSIGNMENT OF IMAGES IN THE ARRAY

We will create the "showIMG" function
with two types of parameters: one
numeric and one of type Sprite. Based
on the number entered as the numeric
parameter, we will assign a specific
image to the Sprite passed as the other
parameter.

We will use a separate condition for
each pair of cards to assign a
corresponding image.

CHOOSING AN OPTION MECHANISM

We will program the interaction
between the player and the hidden card.
Here, we will check if the "A" button is
pressed and based on whether one or
both choices have been made, we will
change the image of the hidden card and
update the values of the variables
"optA" or "optB" to reflect the selected
card.
In this code, we assume that the
variables "optA" and "optB" have been
declared and set to -1 to indicate no
choices made yet.

When the "A" button is pressed, we
check if "optA" is -1. If it is, we assign the
value of the selected card (from the
"numberList") to "optA" and show the
corresponding image on the card. If
"optA" is not -1, we assume "optB" is -1,
assign the value of the selected card to
"optB", show the corresponding image,
and then perform the comparison logic
to check if the choices match.

CURSOR MOVEMENT MECHANISM

We will program the left button to
decrease the value of "pointerPos". We
will also add a condition to prevent the
value from going below the minimum
value, which in this case is 0.

We will program the right button to
increase the value of "pointerPos". The
maximum value allowed will be 9, which
corresponds to the number of cards
being used (assuming there are 10 cards,
the positions will range from 0 to 9).

In this code, when the right button is
pressed, we check if the current value of
"pointerPos" is less than 9. If it is, we
increment the value of "pointerPos" by
1.

This condition ensures that the value of
"pointerPos" doesn't exceed 9, which is
the maximum allowed value based on
the number of cards being used.

We will drag an "on game update" block
to the workspace. With this instruction,
we will change the position of the
"pointer" sprite. We will also check if the
value of "pointerPos" is even.

CORRECT/INCORRECT RESPONSE MECHANISM

We will drag another "on game update"
block to check if the choices of the two
cards are correct or not.

In this code, we use the "on game
update" block to continuously check if
both choices have been made. We do
this by checking if the values of "optA"
and "optB" are not equal to -1, which
indicates that a choice has been made
for both cards.

If both choices have been made, we
compare the values of "optA" and
"optB". If they are equal, it means the
choices match. In this case, we reset the
choices by setting "optA" and "optB"
back to -1, increase the score by 1, and
you can add your code to display a
celebration effect.

If the choices do not match, we change
the displayed images, reset the sprites
to the "hideCard" type, and reset "optA"
and "optB" back to -1.

GAME OVER MECHANISM

We will add one more "on game update"
block to finish the game.

In this code, we use the "on game
update" block to continuously check if
the score is equal to or greater than the
number of card pairs. We calculate the
number of card pairs by dividing the
total number of cards (stored in
"cardNumber") by 2.

If the score meets or exceeds the
number of card pairs, it means the game
is over.

With the programming we have done so far, you will be able to navigate the cursor among the

different cards, select them to uncover and see which cards they are. If you match a pair, you will

earn a point, and when you have found all the pairs, you win the game.

