

FIRST LOOP TASK

Description.

In this project, we will create a classic game called "Block Out". The main objective of the video

game is to destroy blocks using a ball while preventing it from falling using a horizontal bar.

We acces to MakeCode Arcade and we do the necessary operations.

Goals.

- Create a player bar sprite.

- Create a ball sprite.

- Create different sprite blocks.

- Implement ball bounce mechanics on blocks and win points.

- Implement ball bounce mechanics on the player bar.

- Implement automatic block creation and placement mechanics.

https://arcade.makecode.com/

Programming guide.

NEW PROJECT

We start creating a project, we should

stablish the name, for example ¨Picking

up food¨ and then press ¨create¨

button.

Here you have the link with part of the programming and assets done.
https://makecode.com/_Vgd64v9qAHAJ

ASSET CREATION

MAIN SPRITE CREATION

We recommend the use of a 22x10 grid

for the Sprite of bar.

https://makecode.com/_Vgd64v9qAHAJ

ADITIONAL SPRITE CREATION

We recommend the use of a 7x7 grid

for the Sprite of ball.

We recommend the use of a 16x16 grid

for the Sprite of block1.

We recommend the use of a 16x16 grid

for the Sprite of block2.

We recommend the use of a 16x16 grid

for the Sprite of block3.

MAIN PROGRAMMING

ON START GAME CREATION

We create an on start block and we add

the following blocks inside:

We create playerBar, add our Sprite bar

and set it of kind Player. We place it on

“x” 79 and “y” 110. We also say the

sprite to stay in screen and set a vx of

100 and vy 0 so it only moves on the

‘’x’’ axis.

We do the same with the ball but

changing speed, the condition, the

position, the bounce and the destroy

off.

Set score to 0, set background color to

so we can add a colour.

Last, we create the direction variable

and set it to 1.

STAGE CREATION

We are going to create our scenario,
but instead of placing the blocks one by
one, we will instruct the game to create
them and then place them side by side.

We add them in the function
createStage.

We will use a for loop, and the index

will range from 0 to 9. With this, we

will create the number of blocks that

the rows will contain, a total of 10.

In computer science, counting

typically starts from 0 rather than 1,

which is why the loop starts from 0

and ends at 9. These 10 numbers are

included in the loop.

Now, to create the number of rows in

our level, we will add another for

loop inside our existing loop. We

will set the index2 to range from 0 to

2. This way, we are instructing the

game to have 3 rows.

First, we will instruct the game to

multiply by 18 each index (16 for the

size of our block and an additional 2

for spacing between blocks) to

establish the spacing for our blocks.

Next, we will add an if conditional

statement and instruct the game that
if the remainder of the division between

index2 and 2 is equal to 1, we will

multiply x by 18 and add 8. This will

allow the blocks to move to the next

row and have vertical spacing.

With the foundation of creating rows

and blocks per row, let's instruct the

game to select blocks randomly.

To do this, we will start by creating

the variable " tilePick" and assign it a

random value between 0 and 2. This

will allow us to choose blocks

randomly.

Right after that, we instruct the game

to assign a specific block based on

the random number obtained in the

variable. It chooses a block or another

and place it in the position correctly

in x based on the current value of the

"index2" variable

Finally, once the function is

completed, we will include it at the

beginning, right after programming

the ball and before declaring the

score.

INTERACTION MECHANICS

This mechanic is simple. We will instruct
our game that when our ball

(Projectile) touches the bar (Player), it
should maintain its velocity in x

direction but change its velocity in y
direction to the opposite direction. To
achieve this, we just need to multiply

its velocity in the y direction by -1.

BALL BOUNCING WITH WALL MECHANIC

To begin, we are going to create a

function that tells us where the ball has

hit. For this, we will include 2

parameters of type Sprite named sprite

(ball) and otherSprite (block) in the

function.

Inside the function, we will make the

following checks:

If the ball hits the left corner or the

right corner of the block, we will set

direction to 1. Otherwise, we will set it

to 0.

Once the function is implemented, we
will instruct the game to perform the
following actions when the ball hits

with the block:
First, we will add one point to the

player.

Then, we will perform the check inside

the function.

Lastly, if direction is equal to 1, we
instruct the game to multiply vx by -1 to
change the horizontal direction while
maintaining the same vy. If direction is
not equal to 1, we multiply by -1 the vy
to change the vertical direction while
keeping the same vx.

END OF THE GAME MECHANIC

For this mechanic, we will continuously

check the following:

First, if the ball descends more than

119, the game is lost.

Second, if the score is equal to 29, the

game is won.

Thanks to this programming, we have created a very basic "Block Out" game. We have learned how

to automatically generate a game scenario using loops, as well as how to perform collision checks

and apply different effects to them. Now, it is your turn to customize it and add content. Here is ours

for you to get inspired a bit: https://makecode.com/_Pj54xtFvfddj

https://makecode.com/_Pj54xtFvfddj

Glossary

If-Else: A conditional statement that executes a sequence of instructions if it is true, and another

sequence if it is false.

Comparison Operators: Operators that compare one value to another and are used within a

condition.

Variables: A space associated with an identifier that contains a value that can be modified.

Functions: A subprogram that contains a set of instructions and can be executed from the main

program by calling it.

Acceleration: The change in velocity per unit of time.

Velocity: A physical magnitude that relates position to the increment of time.

Walls: Objects or spaces where different elements of the game cannot pass through.

Score: The total points a player obtains from certain interactions.

